Оптимизация размеров поставок
(1.5.)
Для того чтобы утверждать о нахождении экстремальной точки, первая производная функции должна иметь решение, а точка, в которой первая производная равна нулю, должна быть стационарной. Формула имеет следующий вид:
(1.6.)
Соответственно точка экстремума функции, минимум затрат и оптимальный размер поставки будут находиться в точке qопт. Решая уравнение относительно q, получим:
(1.7.)
Это и есть формула оптимального размера заказа (Economic order quantity) - формула Вильсона.
Математический вывод формулы Вильсона важен для понимания некоторых её возможностей и ограничений. А понимание нужно, для того чтобы исключить ошибки, возможные при попытках практического применения расширенных возможностей, которые предоставляет эта формула.
Главный вывод, касающийся ограничений использования формулы EOQ, заключён в том, что функция затрат должна быть непрерывной и дифференцируемой на интервале (0; inf). Соответственно задача нахождения оптимального размера поставки будет решаться за один шаг. Изменение алгоритма расчёта, например для анализа системы скидок, приводит к тому, что в функции суммарных затрат появляются точки разрыва первого рода. Формально такая функция не подлежит дифференцированию. Решение задачи заключается в поиске минимальных значений суммарных затрат на каждом из интервалов между точками разрыва и в самих точках. Но этот метод уже будет называться не исследованием функции, а методом перебора значений. Вариантов же, которые нужно посчитать и сравнить между собой, будет ровно столько, сколько будет комбинаций самих параметров в формуле суммарных затрат.[2]
Организация логистического управления